

Journal of Organometallic Chemistry 502 (1995) 137-141

# Organic syntheses via transition metal complexes. LXXXI. \* Bis(carbene) complex of chromium connected by a conjugated ammonium pentadienide bridge

Rudolf Aumann<sup>\*</sup>, Beate Jasper, Roland Fröhlich<sup>1</sup>, Sirpa Kotila<sup>1</sup>

Organisch-Chemisches Institut der Universität Münster, Orléans-Ring 23, 48149 Münster, Deutschland

Received 30 May 1995

#### Abstract

The reaction of pentacarbonyl(1-ethoxyethylidene)chromium and tetrachlorocyclopropene in the presence of triethylamine affords a bis(carbene) complex 3, in which the carbene chromium units are connected by a conjugated and planar ammonium pentadienide bridge. According to NMR measurements the compound adopts a fluctional (*Z*, *E*) configuration. The structure of 3 was established by X-ray structure analysis  $[C_{27}H_{27}Cr_2NO_{12} \cdot 2CH_2Cl_2, \text{ triclinic, space group PI (No. 2), } a = 12.703(1) \text{ Å}, b = 12.847(1) \text{ Å}, c = 13.667(2) \text{ Å}, \alpha = 95.77(1)^\circ, \beta = 110.15(1)^\circ, \gamma = 112.81(1)^\circ Z = 2, R = 0.072, wR^2 = 0.201].$ 

Keywords: Chromium; Bis(carbene) complexes; Cyclopropanes; Ammonium ylide; Radialene; Bridging ligand

### 1. Binuclear conjugated complexes

Binuclear organometallic complexes, in which the metal centers are connected by a conjugated carbon bridge, have attracted the interest of several research groups lately with respect to a potential application as material for nonlinear optics, electrooptics and molecular electronics [2,3,4]. A wide variety of metal complexes  $L_n M$ -(C=C)<sub>x</sub>-ML<sub>n</sub> is known, in which two metal centers are connected by an alkyne bridge [5], but to date only a few examples of conjugated bis(carbene) complexes  $L_n M$ =CX-(CR=CR)<sub>x</sub>-XC=ML<sub>n</sub> have been reported (Table 1).

# 2. Ammonium pentadienide bridged bis(carbene) complex

It is well established that  $\alpha$ -hydrogen atoms of the methylcarbene chromium complex (CO)<sub>5</sub>Cr=C(OEt)-

CH<sub>3</sub> 1 [15,16] are acidic [17] and easily replaced via enolate intermediates [18,19,20,21], e.g. by base-catalyzed condensation with aldehydes [22] or acid amides [23] to give alkenylcarbene complexes. Chain extension with cationic olefin complexes [24,25,26] and tropylium ions [27] has also been reported. An oxidative coupling in the presence of copper salts leads to formation of bridging bis(carbene) complexes [7,21,28,29,30]. Bis(carbene) complexes were also obtained by reaction of  $\alpha$ -lithio carbene anions with diiodoalkanes [31] or by Michael addition to alkenylcarbene complexes [21].

We have generated a novel type of conjugated bridged bis(carbene) complex 3 by reacting two equivalents of 1 with tetrachlorocyclopropene in presence of triethylamine. The condensation involves the elimination of four equivalents of HCl and the formation of a hitherto unknown nitrogen ylide system, in which two carbene units are connected by an ammonium pentadienide bridge (Scheme 1).

# 3. Spectroscopy

The bis(carbene) compound 3 was assigned an (E, Z) configuration based on spectroscopic evidence, and on the fact that two separate signals are observed in the <sup>13</sup>C

 $<sup>\</sup>stackrel{\alpha}{}$  LXXX. Paper, see [1]. Dedicated to Prof. Dr. Henri Brunner on the occasion of his 60<sup>th</sup> birthday.

Corresponding author.

<sup>&</sup>lt;sup>1</sup> Authors for correspondence relating to X-ray structure analysis.

| Table  | 1 |
|--------|---|
| I abic |   |

Conjugated Bis(carbene) Complexes  $L_n M = CX - (CR = CR)_x - XC = ML_n$ 

| L <sub>n</sub> M                                                                       | =CX-(CR=CR) <sub>x</sub> -CX=                                  | Ref. |  |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------|------|--|
| $\overline{\text{FeC}_{5}\text{H}_{5}(\text{Ph}_{2}\text{PCH}_{2}\text{PPh}_{2})^{+}}$ | =CH-CH=CH-CH=                                                  | [6]  |  |
| $Mn(MeC_5H_4)(CO)_7$                                                                   | =C(OEt)-CH=CH-(OEt)C=                                          | [7]  |  |
| $Re(Me_5C_5)(NO)(PPh_3)^+$                                                             | =C=C=C=C=                                                      | [8]  |  |
| Cr(CO).                                                                                | $=C(OEt)-CH=CH-p-C_{6}H_{4}-CH=CH-(OEt)C=$                     | [9]  |  |
| Cr(CO),                                                                                | =C(OEt)-(biphenylene-4,4'-diyl)-(OEt)C=                        | [10] |  |
| Cr(CO) <sub>5</sub>                                                                    | = $C(NEt_2)$ -CMe = $C(OEt)$ -(biphenylene-4,4'-diyl)-(OEt)C = | [10] |  |
|                                                                                        | $CMe-(NEt_2)C=$                                                |      |  |
| Cr(CO) <sub>5</sub>                                                                    | =C(OMe)-(1,6-methano[10]annulene-2,7-diyl)-(OMe)C=             | [11] |  |
| $Mo(NAr)(OR_{F6})_{2}(THF)$                                                            | =CH-CH=CH-CH=CH-CH=                                            | [12] |  |
| $M_0(NAr)(OR_{F6})_2(DME)$                                                             | =CH- $p$ -C <sub>6</sub> H <sub>4</sub> -CH=                   | [12] |  |
| $M_0(C_{\epsilon}H_{\epsilon})(CO)_{2}$                                                | $=C(NEt_2) \cdot (Et_2 N)C =$                                  | [13] |  |
| W(CO) <sub>5</sub>                                                                     | =C(OEt)-(anthracene-9,10-diyl)-(OEt)C=                         | [14] |  |

NMR spectrum for the Cr=C ( $\delta$  288.0 and 285.2) as well as for the  $\alpha$ -CH groups ( $\delta$  130.3 and 129.8). The <sup>1</sup>H and <sup>13</sup>C NMR signals of the exocyclic =CH unit (20°C, 360 MHz, C<sub>6</sub>D<sub>6</sub> solution) are dynamically broadened by a rapid (and apparently simultaneous) rotation of the exocyclic C=C bonds leading to a degenerated interconversion of **3** and **3'**. A low barrier of rotation may be due to a significant resonance contribution of a polar nitrogen ylide type bond. In line with this observation is the bathochromic shift of [ $\nu$ (C=C)] = 1700 cm<sup>-1</sup> relative to 1780<sup>-1</sup> in methylene cyclopropane. More detailed structural features are revealed by the X-rax structure analysis of compound **3**.

#### 4. Crystal structure analysis of (E, Z)-3

Fig. 1 shows the molecular structure and Tables 2 and 3 give the data of the X-ray structure analysis of (E, Z)-3. The complex forms triclinic crystals in the space group P1 (No. 2). The coordination plane of the carbone carbon atom approximately bisects the angle between two *cisoid* carbonyl groups at the chromium

atom [C21-C22-Cr1-C41 138.4(5)°, C31-C32-Cr2- $C52 - 133.2(4)^{\circ}$ ]. Both 1-metalla-1,3-diene units of (E, Z)-3 adopt an s-trans configuration [C2-C21-C22-Cr1 169.4(4)°, C3-C31-Cr1-C41 - 177.4(4)°], and all three exocyclic bonds of the three-membered ring are planar [sum of valence angles for C1 358.7(8)°, C2  $359.6(4)^\circ$ , C3  $359.9(4)^\circ$ ]. The conjugated diene portion exhibits an alternating CC double-bond, singlebond, double-bond sequence [1.376(6) Å (C2-C21), 1.456(7) Å (C2-C3), 1.362(7) Å (C3-C31)] of which the C=C bond distances are somewhat elongated compared to typical bond distances found in many organic conjugated diene systems [see e.g.: 1,3-butadiene, 1.330 Å (C1-C2), 1.455 Å (C2-C3)] due to delocalization of the negative charge. A strong contribution of a dipolar ylide resonance structure  $Et_3N^+$ -C=C-CH=C(OEt)- $Cr^-$  is indicated by two short [C1-C2 1.350(6) Å and C1-C3 1.370(6) Å] and one long bond distance [C2-C3 1.456(7) Å] in the three-membered ring, and also by the somewhat elongated Cr=C bond distances [Cr1-C22 2.113(5) Å, Cr2-C32 2.113(5) Å; for comparison see  $(CO)_{c}Cr = C(OMe)Ph 2.03(3)^{32}$ ]. Based on the X-ray



Scheme 1. Formation of bis(carbene) complex 3 by condensation of 1 with tetrachlorocyclopropene 2.



Fig. 1. Molecular structure of the ammonium pentadienide complex (E, Z)-3.

data alone, and if stressing the presence of an almost planar Cr1=C(OEt)-CH=C-C=CH-(EtO)C=Cr2unit, compound (E, Z)-3 may be considered as a butadiene-1,4-diyl bis(carbene) complex. But a more adequate bond description of the molecule is achieved by including the spectroscopic information given above. Accordingly, more attention has to be focused on the

Table 2

| Selected | bond | lengths | [Å] | and | angles | [°] | for | bis( | carbene) | comple | x 3 |
|----------|------|---------|-----|-----|--------|-----|-----|------|----------|--------|-----|
|          |      |         |     |     |        |     |     |      |          |        | _   |

| Cr(1) - C(22)                              | 2.113(5)             |
|--------------------------------------------|----------------------|
| Cr(2)-C(32)                                | 2.113(5)             |
| C(1)-C(2)                                  | 1.350(6)             |
| C(1)–C(3)                                  | 1.370(6)             |
| C(1)-N                                     | 1.453(5)             |
| C(2)-C(21)                                 | 1.376(6)             |
| C(2) - C(3)                                | 1.456(7)             |
| C(3) - C(31)                               | 1.362(7)             |
| C(21)-C(22)                                | 1.407(6)             |
| C(22)-O(23)                                | 1.349(6)             |
| O(23)-C(24)                                | 1.443(6)             |
| C(24) - C(25)                              | 1.448(9)             |
| C(31) - C(32)                              | 1.405(7)             |
| C(32) - O(33)                              | 1 353(5)             |
| O(33) - C(34)                              | 1 434(6)             |
| C(34) - C(35)                              | 1 458(8)             |
| $N_{-}C(11)$                               | 1 514(7)             |
| N = C(15)                                  | 1.514(6)             |
| N = C(13)                                  | 1.546(6)             |
| C(11) = C(12)                              | 1.546(0)             |
| C(13) - C(14)                              | 1.312(9)             |
| C(15) - C(14)                              | 1.407(9)<br>1.512(7) |
| C(13) = C(10)                              | 1.515(7)             |
| C(2) = C(1) = C(3)                         | 64 7(3)              |
| C(2) - C(1) = O(3)                         | 144.7(5)             |
| C(2) = C(1) = N                            | 144.7(3)<br>140.2(4) |
| C(1) = C(2) = C(21)                        | 149.3(4)             |
| C(1) - C(2) - C(21)                        | 130.4(3)<br>59 2(2)  |
| C(21) C(2) C(3)                            | 30.3(3)<br>150.0(4)  |
| C(21) - C(2) - C(3)<br>C(31) - C(3) - C(1) | 150.9(4)             |
| C(31) = C(3) = C(1)                        | 137.0(4)             |
| C(3) = C(3) = C(2)                         | 145.3(4)             |
| C(1) - C(3) - C(2)                         | 57.0(5)<br>125.5(4)  |
| O(22) = O(21) = O(22)                      | 123.3(4)             |
| O(23) - O(22) - O(21)                      | 110.1(4)             |
| O(23) - O(22) - O(1)                       | 129.2(3)             |
| C(21) - C(22) - Cr(1)                      | 120.6(3)             |
| C(22) = O(23) = C(24)<br>C(23) = C(24)     | 121.5(4)             |
| O(23) - O(24) - O(25)                      | 109.4(5)             |
| C(3) = C(31) = C(32)                       | 127.9(4)             |
| O(33) - O(32) - O(31)                      | 110.3(4)             |
| O(33) - O(32) - O(2)                       | 130.0(3)             |
| C(31) - C(32) - C(2)                       | 119.7(3)             |
| C(32) = O(33) = C(34)                      | 119.7(4)             |
| O(33) - C(34) - C(35)                      | 110.5(5)             |
| C(1) = N = C(11)                           | 107.7(4)             |
| C(1) - N - C(15)                           | 106.5(4)             |
| C(11) - N - C(15)                          | 112.4(4)             |
| C(1) = N = C(13)                           | 108.9(4)             |
| C(11) - N - C(13)                          | 107.8(4)             |
| C(11) - N - C(15)                          | 112.4(4)             |
| C(15) - N - C(13)                          | 113.3(4)             |
| C(12) - C(11) - N                          | 114.4(5)             |
| C(14) - C(13) - N                          | 114.0(5)             |
| C(16)-C(15)-N                              | 113.7(4)             |

| Table 3                                                     |              |
|-------------------------------------------------------------|--------------|
| Atomic coordinates $(\times 10^4)$ and equivalent isotropic | displacement |
| parameters ( $Å^2 \times 10^3$ ) for compound 3             | -            |

| parameter          | 5 (11 /(10 / 10 | t compound b |          |                       |
|--------------------|-----------------|--------------|----------|-----------------------|
|                    | x               | у            | z        | U(eq) <sup>a</sup>    |
| $\overline{Cr(1)}$ | 502(1)          | 3452(1)      | 3064(1)  | 35(1)                 |
| C(41)              | 1631(7)         | 3245(6)      | 4258(6)  | 61(2)                 |
| <b>O(4</b> 1)      | 2315(6)         | 3143(6)      | 4994(5)  | 110(2)                |
| C(42)              | 1529(5)         | 5057(5)      | 3546(5)  | 46(1)                 |
| O(42)              | 2156(4)         | 6056(3)      | 3848(4)  | 67(1)                 |
| C(43)              | - 569(5)        | 3715(5)      | 1874(5)  | 47(1)                 |
| 0(43)              | -1147(5)        | 3963(5)      | 1171(4)  | 74(1)                 |
| C(44)              | 1342(5)         | 3255(5)      | 2203(5)  | 47(1)                 |
| O(44)              | 1855(5)         | 3172(4)      | 1685(5)  | 74(1)                 |
| C(45)              | -340(5)         | 3606(5)      | 3931(5)  | 44(1)                 |
| 0(45)              | -804(5)         | 3714(4)      | 4489(4)  | 62(1)                 |
| Cr(2)              | - 5469(1)       | -3602(1)     | 1836(1)  | 37(1)                 |
| C(51)              | - 5547(5)       | -2889(5)     | 680(5)   | 51(1)                 |
| 0(51)              | - 5613(5)       | -2488(5)     | -32(4)   | 76(1)                 |
| C(52)              | - 5439(5)       | -4327(5)     | 2981(5)  | 49(1)                 |
| 0(52)              | -5489(5)        | -4748(5)     | 3672(4)  | 76(1)                 |
| C(53)              | -4912(5)        | -2171(5)     | 2856(5)  | 49(1)                 |
| 0(53)              | - 4586(4)       | -1332(4)     | 3470(5)  | 76(2)                 |
| C(54)              | -6045(5)        | -5050(5)     | 828(5)   | 48(1)                 |
| 0(54)              | -6452(5)        | -5913(4)     | 203(4)   | 74(1)                 |
| C(55)              | -7142(5)        | -3951(5)     | 1519(5)  | 46(1)                 |
| 0(55)              | -8165(4)        | -4168(4)     | 1332(4)  | 61(1)                 |
| C(1)               | -408(4)         | -1314(4)     | 2582(4)  | 35(1)                 |
| C(2)               | -493(4)         | -303(4)      | 2536(4)  | 32(1)                 |
| C(3)               | -1571(4)        | -1386(4)     | 2384(4)  | 32(1)                 |
| C(21)              | 65(4)           | 888(4)       | 2564(4)  | 32(1)<br>34(1)        |
| C(22)              | - 545(4)        | 1606(4)      | 2582(4)  | 33(1)                 |
| O(23)              | -1792(3)        | 942(3)       | 2243(3)  | 39(1)                 |
| C(24)              | -2648(5)        | 1458(5)      | 2048(6)  | 61(2)                 |
| C(25)              | -3927(6)        | 536(6)       | 1604(7)  | 70(2)                 |
| C(31)              | -2802(5)        | -1885(4)     | 2215(4)  | 36(1)                 |
| C(32)              | -3549(4)        | -3041(4)     | 2181(4)  | 34(1)                 |
| O(33)              | -2860(3)        | -3640(3)     | 2377(3)  | 41(1)                 |
| C(34)              | -3455(6)        | -4861(5)     | 2371(5)  | 61(2)                 |
| C(35)              | -2516(7)        | - 5244(6)    | 2857(9)  | 86(3)                 |
| N                  | 453(4)          | -1831(3)     | 2875(3)  | 34(1)                 |
| C(11)              | 581(6)          | -2064(5)     | 3965(5)  | 52(1)                 |
| C(12)              | 1143(8)         | -976(7)      | 4880(5)  | $\frac{52(1)}{70(2)}$ |
| C(13)              | -128(5)         | -3023(5)     | 2038(5)  | 47(1)                 |
| C(14)              | -287(6)         | -2930(6)     | 925(5)   | 60(2)                 |
| C(15)              | 1684(4)         | -948(4)      | 2912(5)  | 43(1)                 |
| C(16)              | 2703(6)         | -1345(6)     | 3208(7)  | 43(1)<br>60(2)        |
| CI(11)             | 2652(3)         | -768(4)      | 590(3)   | 147(1)                |
| CI(1A)             | 1147(9)         | 459(6)       | 307(5)   | $161(4)^{b}$          |
| C(1R)              | 3195(25)        | 1627(18)     | 1242(20) | 282(16) °             |
| C(70)              | 2386(13)        | 400(15)      | 247(11)  | 163(6)                |
| C (21)             | 4290(4)         | 8304(4)      | 6111(4)  | 175(2)                |
| CI(2A)             | 6173(8)         | 7712(7)      | 6937(0)  | $212(6)^{d}$          |
| Cl(2R)             | 6744(6)         | 7803(6)      | 5872(2)  | 173(2) °              |
| C(80)              | 4000(12)        | 7377(12)     | 5860(0)  | 125(3)                |
| (00)               | 7202(14)        | 1514(15)     | 2000(9)  | 1/0(7)                |

<sup>a</sup>  $U_{(eq)}$  is defined as one third of the trace of the orthogonalized  $\overline{U_{ij}}$  tensor.

<sup>b</sup> SOF: 0.58(1). <sup>c</sup> SOF: 0.42(1). <sup>d</sup> SOF: 0.57(1). <sup>e</sup> SOF: 0.43(1).

triethylammonium pentadienide unit

$$Cr1^{-}-C(OEt) = CH - C = C(N^{+}Et_3) - C = CH - (EtO)C = Cr2$$
  
 $cr1 = C(OEt) - CH = C - C(N^{+}Et_3) = C - CH = (EtO)C - Cr2^{-}$ 

as the most remarkable and predominant structural element of the bis(carbene) complex 3.

# 5. Experimental section

All operations were performed under argon. Solvents were dried by distillation from sodium/benzophenone. <sup>1</sup>H NMR and <sup>13</sup>C NMR: Bruker WM 300. Multiplicities were determined by DEPT. Chemical shifts refer to  $\delta_{TMS} = 0.00$  ppm. IR: Digilab FTS 45. MS: Finnigan MAT 312. Elemental analysis: Perkin-Elmer 240 Elemental Analyser. Melting points uncorrected. Column chromatography: Merck-Kieselgel 100. TLC: Merck DC-Alufolien Kieselgel 60 F 254.

# 5.1. Triethylammonium-bis{[pentacarbonyl(1-ethoxyethyl-1-ylidene)chromium]-2-ylidene}cyclopropanide (3)

To pentacarbonyl(1-ethoxyethylidene)chromium 1 (256 mg, 1.00 mmol) and tetrachlorocyclopropene 2 (79 mg, 0.50 mmol) in a 5-ml screw-top vessel in 1 ml of dichloromethane is added triethylamine (253 mg, 2.5 mmol) in 2 ml of dichloromethane dropwise with vigorous stirring at  $-20^{\circ}$ C. According to a TLC test compound 1 is consumed at 0°C after 20 min while a dark greenish solution is formed. 1 ml of ether and 1 ml of water is added and stirring is continued for 1 min. The mixture is centrifuged and the organic layer is separated immediately. Addition of diethyl ether affords yellow crystals of 3 (265 mg, 80%,  $R_f = 0.5$  in dichloromethane, mp 100°C, dec.). <sup>1</sup>H NMR (CD<sub>3</sub>COCD<sub>3</sub>, 360 MHz, 20°C):  $\delta$  6.40 and 6.10 (1 H each, s dynamically broadened each, =CH each), 4.80 (4 H, s dynamically broadend, 2 OCH<sub>2</sub>), 4.05 (6 H, q, 3 NCH<sub>2</sub>), 1.50 and 1.42 (3 H each, s dynamically broadend each, OCH<sub>2</sub>CH<sub>3</sub> each), 1.35 (9 H, t, NCH<sub>2</sub>CH<sub>3</sub>). <sup>13</sup>C NMR  $(CD_3COCD_3, 20^{\circ}C)$ :  $\delta$  288.0 and 285.2 (Cr=C each, broad), 229.8 and 224.9 [1:4, trans- and cis-CO 2  $Cr(CO)_5$ , 130.3 and 129.8 (Cq each, CH = C ring each), 117.2 (Cq, N-C ring), 110.0 and 106.5 (=CH each), 78.9 (2 OCH<sub>2</sub>), 62.7 (3 NCH<sub>2</sub>), 21.4 (2 OCH<sub>2</sub>CH<sub>3</sub>), 13.4 (2 NCH<sub>2</sub> $CH_3$ ). IR (hexane, diffuse reflection), cm<sup>-1</sup>:  $\nu = 2045.4$  (30), 1965.9 (5) 1900 (100)  $[\nu(C=O)]$ , 1700.7  $[\nu(C=C)$  exo methylene]. Anal. Calc. for C<sub>27</sub>H<sub>27</sub>Cr<sub>2</sub>NO<sub>12</sub> (661.5): C, 49.02; H, 4.11; N, 2.12; Found: C, 49.04; H, 4.01; N, 2.14.

# 5.2. X-ray crystal structure

A crystal of  $0.40 \times 0.35 \times 0.35$  mm was mounted on a glass fibre in inert oil (RS3000, Riedel de Haën), data were collected on an Enraf-Nonius CAD4 diffractometer with liquid nitrogen cooling at  $-50^{\circ}$ C. Graphitemonochromated Mo K  $\alpha$  radiation was used and the diffractometer was operated in  $\omega$ -2 $\theta$  mode. The intensities were corrected for Lorentz and polarization effects and absorption correction was done empirically using  $\psi$ -scan-data. The structure was solved by direct methods using SHELXS-86 and refined by full-matrix-least-suqares against  $F^2$  using the SHELXL-93 program. The figure was drawn by SCHAKAL-92. All atoms beside hydrogens were refined anisotropically, the hydrogens were placed to calculated positions and refined as riding atoms. The disordered CH<sub>2</sub>Cl<sub>2</sub>-molecules were refined using geometricals restraints.

Crystal data:  $C_{27}H_{27}NO_{12}Cr_2 \times 2$   $CH_2Cl_2$ , M = 831.35, triclinic space group P1, a = 12.703(1), b = 12.847(1), c = 13.667(2) Å,  $\alpha = 95.77(1)$ ,  $\beta = 110.15(1)$ ,  $\gamma = 112.81(1)^\circ$ , V = 1858.2(3) Å<sup>3</sup>, Z = 2,  $D_c = 1.486$  g cm<sup>-3</sup>,  $\lambda$ (Mo K  $\alpha$ ) = 0.71073 Å,  $\mu = 0.93$  mm<sup>-1</sup>, F(000) = 848, T = 223(2) K. A total of 8912 reflections were collected (2.33 <  $\theta$  < 26.27°) of which 7492 were independent. The final *R* indices are R = 0.072 and  $wR^2 = 0.201$  for 4733 observed [ $I > 2\sigma(I)$ ] reflections and 458 refined parameters, Goodness of fit on  $F^2$  is 1.036.

Fractional atomic coordinates and equivalent thermal parameters are given in Table 3, and selected bond lengths and angles in Table 2. Details of the X-ray crystal structure analysis are available upon request from the Fachinfomationszentrum Karlsruhe, D-76344 Eggenstein-Leopoldshafen, on quoting the depository number CSD-401866, avm. 269, names of the authors, and the journal citation.

## Acknowledgements

This work was supported by the Volkswagen-Stiftung and the Fonds der Chemischen Industrie. S.K. thanks the Academy of Finland for a fellowship.

# References

- R. Aumann, B. Jasper, R. Fröhlich, Organometallics, 14 (1995) 3173.
- [2] M.H. Chisholm, Angew. Chem., 103 (1991) 690; Angew. Chem., Int. Ed. Engl., 30 (1991) 673.
- [3] M. Biswas, A. Mukherjee, Adv. Polym. Sci., 115 (1994) 89.
- [4] M.B. Sponsler, Organometallics, 14 (1995) 1920.
- [5] For a recent review see: W. Beck, B. Niemer, M. Wieser, Angew. Chem., 105 (1993) 969; Angew. Chem., Int. Ed. Engl., 32 (1993) 923.
- [6] B.A. Etzenhouser, Q. Chen, M.B. Sponsler, Organometallics, 13 (1994) 4176.
- [7] A. Rabier, N. Lugan, R. Mathieu, G.L. Geoffroy, Organometallics, 13 (1994) 4676.
- [8] Y. Zhou, J.W. Seyler, W. Weng, A.M. Arif, J.A. Gladysz, J. Am. Chem. Soc., 115 (1993) 889.
- [9] R. Aumann, H. Heinen, Chem. Ber., 120 (1987) 537.
- [10] N.H. Tran Huy, P. Lefloch, F. Robert, Y. Jeannin, J. Organomet. Chem., 327 (1987) 211.
- [11] R. Neidlein, S. Gürtler, C. Krieger, *Helv. Chim. Acta*, 77 (1994) 2303.
- [12] H.H. Fox, J.-K. Lee, L.-Y. Park, R.R. Schrock, Organometallics 12 (1993) 759.

- [13] J. Heck, K.-A. Kriebisch, W. Massa, S. Wocadlo, J. Organomet. Chem., 482 (1994) 81.
- [14] T. Albrecht, J. Sauer, H. Nöth, *Tetrahedron Lett.*, 35 (1994) 561.
- [15] E.O. Fischer, A. Maasböl, Angew. Chem., 76 (1964) 645; Angew. Chem., Int. Ed. Engl., 3 (1964) 580.
- [16] R. Aumann, E.O. Fischer, Angew. Chem., 79 (1967) 900; Angew. Chem., Int. Ed. Engl., 6 (1967) 879.
- [17] C.G. Kreiter, Angew. Chem., 80 (1968) 402; Angew. Chem., Int. Ed. Engl., 7 (1968) 390.
- [18] (a) C.P. Casey, R.L. Anderson, J. Am. Chem. Soc., 96 (1974)
   1230; (b) C.P. Casey, R.A. Boggs, R.L. Anderson, J. Am. Chem. Soc., 92 (1972) 8947.
- [19] (a) Y.-Ch. Xu, W.D. Wulff, J. Org. Chem., 52 (1987) 3263; (b)
   W.D. Wulff, S.R. Gilbertson, J. Am. Chem. Soc., 107 (1985) 503.
- [20] C. Alverez-Toledano, A. Parlier, F. Rose-Munch, H. Rudler, J.C. Daran, C. Knobler, Y. Jeannin, J. Organomet. Chem., 323 (1987) 371.
- [21] (a) D.W. Macomber, P. Madhukar, R.D. Rogers, Organometallics, 8 (1989) 1275; (b) D.W. Macomber, M. Hung, M. Puttannachetty, M. Liang, R.D. Rogers, Organometallics, 10 (1991) 737.

- [22] R. Aumann, H. Heinen, Chem. Ber., 120 (1987) 537.
- [23] (a) R. Aumann, P. Hinterding, Chem. Ber., 123 (1993) 611; Chem. Ber., 123 (1990) 2047.
- [24] (a) J. Breimair, T. Weidmann, B. Wagner, W. Beck, Chem. Ber., 124 (1991) 2431; (b) B. Niemer, J. Breimair, T. Völkl, B. Wagner, K. Pohlborn, W. Beck, Chem. Ber., 124 (1991) 2237; (c) W. Beck, J. Breimair, P. Fritz, W. Knauer, T. Weidmann, in F.R. Kreißl (ed.), Transition Metall Carbyne Complexes, p. 189-199, Kluwer, 1993.
- [25] C. Kelley, M.R. Terry, A.W. Kaplan, G. Geoffroy, N. Lugan, R. Mathieu, B.S. Haggerty, A.L. Rheingold, *Inorg. Chim. Acta*, 198 (1992) 601.
- [26] R. Aumann, M. Läge, B. Krebs, Chem. Ber., 127 (1994) 731.
- [27] R. Aumann, M. Runge, Chem. Ber., 125 (1992) 259.
- [28] S. Cron, V. Morvan, C. Lapinte, J. Chem. Soc., Chem. Commun., (1993) 1611.
- [29] L. Jordi, M. Moretó, S. Ricart, J.M. Viñas, E. Molins, C. Miravitlles, J. Organomet. Chem. 444 (1993) C28.
- [30] L. Lattuada, E. Licandro, S. Maiorana, H. Molinari, A. Papagni, Organometallics 10 (1991) 807.
- [31] D.W. Macomber, P. Madhukar, J. Organomet. Chem. 433, (1992) 279.
- [32] O.S. Mills, J. Redhouse, J. Chem. Soc. (A) (1968) 642.